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1. Introduction

It is of great interest to study nonsupersymmetric deformations of AdS5 × S5 space. The

ultimate goal would be to find the gravity duals of N = 0 Yang-Mills theory and realistic

QCD models. The Janus deformation of AdS5 space [1] is nonsupersymmetric. However,

its dual field theory is not in the universality class of confining gauge theories. So in that

sense it does not meet the goal that one might hope for. Nevertheless it is an interesting

and rare example of nonsupersymmetric deformations where both gravitational and dual

field theory descriptions are under good control. Indeed both descriptions are remarkably

simple. In the gravity side the Janus deformation is a thick AdS4-sliced domain wall in

AdS5 with the varying dilaton, where asymptotically the dilaton approaches a constant in

one half of the boundary space and the different value in the other half. In the gauge theory

side N = 4 super Yang-Mills (SYM) theory is deformed by the exactly marginal operator

dual to the dilaton — the SYM Lagrangian up to the total derivative — with a space de-

pendent deformation parameter. In effect the coupling constant jumps discontinuously at

the interface of two halves of the boundary space. By construction the Janus deformation

preserves the SO(3, 2) symmetry of the AdS4 slices. Correspondingly the dual field theory

preserves the conformal symmetry at the interface, defining the interface conformal field

theory (ICFT). Albeit being nonsupersymmetric, the Janus deformation was shown to be

stable against a large class of perturbations and believed to be nonperturbatively stable,

owing to the existence of formal killing spinors [2]. Somewhat surprisingly, an exact agree-

ment was found even at the more quantitative level: The Janus deformation predicts the

vev of the exactly marginal operator at large N and large ’t Hooft coupling. Meanwhile

the dual ICFT allows us to compute the vev in all orders in ’t Hooft coupling by using

the conformal perturbation theory. In fact two results agree at the leading order in the
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deformation parameter [3]. It is remarkable to find an exact agreement between two sides

of the strong-weak coupling duality in the nonsupersymmetric theory.

We have been stressing the nonsupersymmetric nature of Janus and its tractability

nonetheless. It is, however, worth mentioning that the supersymmetric Janus deformation

was found in 5-dimensional gauged supergravity [4] and more recently in the full type

IIB supergravity [5]. Correspondingly the ICFT can also be made supersymmetric by

introducing the interface interactions [3]. In fact all the possible interface interactions

which yield the supersymmetric ICFTs were classified in [6]. The supersymmetric Janus

is interesting on its own. In particular it suggests the interpretation of the SUSY Janus

in terms of the intersecting D3 and D5-branes — a potential new decoupling limit of

intersecting D-branes. This may be of relevance in connection to the D-brane realization

of Karch-Randall model [7].

The nonsupersymmetric Janus allows several generalizations. The Janus type domain

wall exists in arbitrary dimensions and exhibits pseudo-supersymmetries [2, 8 – 10]. In the

type IIB case the axion can be turned on by the SL(2, Z) rotation [5]. The AdSd-sliced

Janus can accommodate the AdSp<d-sliced Janus(es) within it in a self-similar fashion [11].

By a double analytic continuation the Janus geometry can be utilized to argue a dual of

the Big Bang/Crunch cosmology from the AdS/CFT perspective [12].

In this note we wish to extend our previous study of the Janus deformation to the

AdS3 × S3 × M4 space. The AdS2-sliced Janus was previously discussed in [2]. Our aim

is to embed it into the AdS/CFT setup in the 10d type IIB string theory. This will thus

yield the Janus deformation of the AdS3/CFT2 correspondence — Janus3/ICFT2. It is our

hope that the further simplicity due to the low dimensionality facilitates more quantitative

studies and provides new qualitative perspectives.

Besides the Janus deformation of the AdS3 × S3 × M4 space, we also discuss the

application of the AdS2-sliced Janus to the black hole. Exploiting the fact that the BTZ

black hole is a quotient of the AdS3 space, it is rather straightforward to consider the

Janus deformation of the BTZ black hole. We will see that the Janus BTZ black hole is

time dependent and has two disconnected boundaries in which the dilaton takes different

constant values. We generalize this by constructing the higher dimensional black holes. The

three and five dimensional solutions can be embedded into the 10d type IIB supergravity.

The paper is organized as follows. In section 2 we construct the Janus deformation of

the AdS3 × S3 ×M4 space. In section 3 we briefly discuss its dual CFT interpretation. In

section 4 we discuss the Janus deformation of the BTZ black hole. In section 5, we deal

with the higher dimensional generalization of the time dependent black hole solution. We

conclude our discussions in last section.

2. Janus deformation in three dimensions

In this section we would like to discuss the Janus deformation of the AdS3×S3×M4, where

M4 may be taken as either T 4 or K3. As we shall see below the deformation along the

internal M4 directions will be just a warping by a conformal factor related to the dilaton.

Thus the details of the internal geometry do not play any role in this study. The spirit of
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writing down the ansatz will be pretty much the same as the case of AdS5 ×S5. Along the

deformation, we like to keep the SO(1, 2)×SO(4) part out of the original SO(2, 2)×SO(4)

global symmetries. One complication is that there is a possibility of adding an extra warp

factor along the internal dimensions. However, it turns out that the warp factor does not

play a role of an extra degree of freedom. Rather it is determined uniquely as a function

of dilaton by imposing the SO(1, 2) × SO(4) part of the global symmetries.

We take the ansatz for the Janus solution in the Einstein frame given by

ds2 = e
φ

2 f(µ)
(

dµ2 + ds2
AdS2

)

+ e
φ

2 ds2
S3 + e−

φ

2 ds2
4 ,

φ = φ(µ) , (2.1)

F3 = 2f(µ)
3

2 dµ ∧ ωAdS2
+ 2ωS3 ,

where ωAdS2
and ωS3 are the unit volume forms on AdS2 and S3 respectively. The line

element ds2
4 is for the internal manifold M4, which may be either T 4 or K3.

The relevant IIB supergravity equations of motion are given by

Rαβ − 1

2
∂αφ∂βφ − 1

4
eφF µν

α Fβ µν +
1

48
eφF 2gαβ = 0 ,

∇2φ =
1

12
eφF 2 , (2.2)

∇α(eφFαβγ) = 0 ,

which should be supplemented by the Bianchi identity dF3 = 0. The equation of motion

for the dilaton can be integrated leading to

φ′(µ) =
γ

f
1

2 (µ)
. (2.3)

The Einstein equations give rise to

f ′f ′ − ff ′′ = −2f3 + γ2f ,

f ′f ′ − 2ff ′′ = −8f3 + 4f2 . (2.4)

It is easy to see that these equations are equivalent to the first order differential equation

f ′f ′ = 4f3 − 4f2 + 2γ2f , (2.5)

corresponding to the motion of a particle with zero energy in a potential given by

V (f) = −4f

(

f2 − f +
γ2

2

)

. (2.6)

So far we have been working with the 10d equations of motion but the above final equa-

tion may also be derived from a dimensionally reduced action down to three dimensions.

We take the ansatz for the dimensional reduction as

ds2 = e
φ

2 gabdxadxb + e
φ

2 ds2
S3 + e−

φ

2 ds2
4 ,

φ = φ(x) , (2.7)

F3 = 2(ωgab
+ ωS3) ,
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where we denote the three metric and its volume form by ds2
3 = gabdxadxb and ωgab

respectively. The three metric and the dilaton can be a general function of the three

coordinates xa. Upon the dimensional reduction, the IIB supergravity becomes the Einstein

gravity coupled to a scalar with a negative cosmological constant; the resulting action reads

I =
1

16πG3

∫

d3x
√

g3

(

R3 − gab
3 ∂aφ∂bφ + 2

)

. (2.8)

where G3 is the 3d Newton constant. We follow the convention of [13], where the 3d AdS

radius and the 3d Newton constant are related to the D1/D5 charges, Q1/Q5, by

R2
ads = g6

√

Q1Q5 ls, G3 =

√
g6

4(Q1Q5)3/4
ls , (2.9)

where the six dimensional string coupling g6 is related to the 10d string coupling by g2
6 =

g2Q5/Q1. The supergravity description is valid if g6Q1 and g6Q5 are large but fixed. We

shall set Rads = 1.

Let us solve our main equation (2.5). If γ2 > 1/2, the geometry develops a naked

curvature singularity. We shall restrict below our discussion to the case of γ2 < 1/2 unless

otherwise is mentioned specifically. The roots of the polynomial,

p(x) = x2 − x +
γ2

2
= (x − α2

+)(x − α2
−) (2.10)

are given by

α2
± =

1

2
(1 ±

√

1 − 2γ2) (2.11)

Then the above equation can be solved by the integral

µ0 ± µ =

∫ ∞

√
f

dx
√

(x2 − α2
+)(x2 − α2

−)
=

1

α+

∫

α+√
f

0

dx
√

(1 − x2)(1 − k2x2)
(2.12)

where k = α−/α+ and α+µ0 = K(k). We choose here µ0 such that µ = 0 at the turning

point. Then the coordinate µ is ranged over the interval [−µ0, µ0], where one can show

that µ0 ≥ π/2 for any γ in [− 1√
2
, 1√

2
]. With the help of the elliptic integral of the first

kind,

F (ϕ, k) =

∫ ϕ

0

dα
√

1 − k2 sin2 α
, (2.13)

the above integral may be represented by

µ0 ± µ =
1

α+
F

(

sin−1
(α+

f
1

2

)

, k

)

. (2.14)

One may invert the above expression as [2]

f =
α2

+

sn2(α+(µ + µ0), k)
(2.15)
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using the Jacobi elliptic functions, sn(z, k), defined by

z =

∫ sn(z,k)

0

dx
√

(1 − x2)(1 − k2x2)
. (2.16)

The cosine amplitude cn(x, k) and the delta amplitude can be introduced by the relations,

cn(z, k) = cos(sin−1(sn(z, k))) , dn(z, k) =
√

1 − k2sn2(z, k) . (2.17)

Then the dilaton can be integrated explicitly as

φ = φ0 +
√

2 ln
(

dn(α+(µ + µ0), k) − k cn(α+(µ + µ0), k)
)

. (2.18)

In fact using a different coordinate defined by

y =

∫ µ

0
ds

√

f(s) , (2.19)

the solution may be presented in terms of elementary functions. In this coordinate, the

three dimensional metric gab in (2.7) takes the form

ds2
3 = f(y)ds2

AdS2
+ dy2 . (2.20)

It is straightforward to find the solution [2]

f(y) =
1

2
(1 +

√

1 − 2γ2 cosh 2y) ,

φ = φ0 +
1√
2

ln

(

1 +
√

1 − 2γ2 +
√

2γ tanh y

1 +
√

1 − 2γ2 −
√

2γ tanh y

)

. (2.21)

Note that the boundary values of the dilaton at µ = ±µ0 are evaluated as

φ± − φ0 = ± 1√
2

tanh−1
√

2γ = ± 1

2
√

2
ln

(

1 +
√

2γ

1 −
√

2γ

)

. (2.22)

The IIB string theory has the SL(2, Z) duality symmetry and the classical IIB super-

gravity possesses the SL(2, R) symmetry. Hence by performing the SL(2, R) transforma-

tion, one may generate the new family of solutions. These solutions in general involve the

nonvanishing axion χ and NS-NS three form field strength in addition. Here we shall not

present the explicit form of such solutions generated by the SL(2, R) transformation, but

would like to note that the corresponding dual CFT involves axionic domain wall together

with the jump of the coupling. Namely in the dual CFT, the θ angle jumps too at the

interface.

For later comparison let us compute the one-point function of dual dilaton operators.

By introducing the Poincare patch parametrization for the AdS2 part, the three metric

reads

ds2
3 =

f(µ)

y2

(

y2dµ2 − dx2
0 + dy2

)

. (2.23)
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We adopt the conformal compactification where the scaling factor is given by
√

f/y. Com-

bining two halves of R2 defined by µ = ±µ0, the boundary becomes a full R2, on which the

dual Janus CFT is defined. In the near boundary region, the above metric can be rewritten

as

ds2
3 =

1

z2

(

dz2 − dx2
0 + dx2 + O(

z2

x2
dxadxb)

)

, (2.24)

where z = y sn(α+(µ0 − µ), k)/α+ is the inverse of the scale factor and x = y cn(α+(µ0 −
µ), k). Note that the dilaton behaves near the boundary as

φ = φ± ∓ γ

2
(µ ∓ µ0)

2 + · · · = φ± − γ

2
ε(x)z2/x2 + · · · . (2.25)

Using the AdS/CFT correspondence, we have the relation

〈Oφ〉 =
δIφ

δφ
= − 1

16πG3

√
g3g

zz
3 ∂zφ|z=0 = −γ Q1Q5

4π

ε(x)

x2
, (2.26)

where we take the dual operator as

Oφ(z, z̄) = − 1

4π

∑

i,a

: ∂Xi,a∂̄Xi,a : . (2.27)

In ref. [14], the Fefferman-Graham coordinate system for the above metric is obtained

and the boundary perturbation of the metric can be identified. Using this, one can show

that

〈Tab〉 = 0 , (2.28)

which is an expected result.

3. The dual CFT

In this section we review the two dimensional CFT dual of type IIB string theory on

AdS3 × S3 × M4 where M4 is either T4 or K3. The central charge of the CFT can be

related to the AdS3 curvature by

c =
3Rads

2G3
. (3.1)

This background can be obtained from a near horizon limit of Q1 D1-branes and Q5

D5-branes, wrapping M4. The theory living on the D1-D5 common 1 + 1 dimensional

worldvolume is a N = (4, 4) supersymmetric field theory. The CFT dual to the near

horizon limit of the D1-D5 system [15] is the IR fixed point of the N = (4, 4) theory. This

theory can be described as a 1 + 1 dimensional supersymmetric σ-model where the target

space is the moduli space of Q1 instantons in a two dimensional SU(Q5) gauge theory.

The moduli space is 4n dimensional where n = Q1Q5 (for M4 = T4) or n = Q1Q5 + 1

(for M4 = K3). The conformal field theory is given by [16 – 18] the smooth resolution of

the orbifold CFT of the symmetric product Mn/Sn. In the following we focus on the case
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where M4 = T 4. The central charge (3.1) of the CFT is then c = 6n = 6Q1Q5. The

orbifold T n
4 /Sn can be constructed by starting with the free field CFT representing the

tensor product T n
4

S =
1

2πα′

∫

d2z
∑

i,a

(

∂Xi,a∂̄Xi,a + ψi,a∂̄ψi,a + ψ̄i,a∂ψ̄i,a

)

. (3.2)

The indices i = 1, 2, · · · 4, and a = 1, 2, · · · n parameterize n copies of the four torus T 4.

Hereafter we shall set α′ = 2. The orbifold then projects onto states which are invariant

under Sn acting by permutation on the coordinates Xi,a. Modular invariance mandates the

inclusion of twisted sectors which contain marginal operators responsible for the smooth

resolution of the orbifold singularities. The correlators of the unperturbed orbifold CFT

for the bosonic fields is given by

〈Xi,a(z, z̄)Xj,b(w, w̄)〉 = − ln | z − w |2 δijδa b , (3.3)

where the sum is over permutations of the index b following the standard orbifolding

procedure.

The Janus deformation of AdS3×S3×M4 has a nontrivial profile for the six dimensional

dilaton φ(6). In order to identify the dual of the Janus solution, one first has to identify

the operator dual to the dilaton. Symmetry considerations simplify the identification, the

dilaton in the Janus solution does not depend on the coordinates of the S3 or T4, in the

dual CFT this means that the operator transforms trivially under the SU(2) × SU(2) R-

symmetry and SU(2) × SU(2) global symmetry of the N = (4, 4) SCFT. Furthermore the

constant Kaluza-Klein mode on the sphere of the dilaton is a massless scalar field in AdS3

and hence corresponds to a marginal deformation with conformal dimensions (h, h̄) = (1, 1).

A natural guess for the dual operator is therefore:

Oφ(z, z̄) = − 1

4π

∑

i,a

: ∂Xi,a∂̄Xi,a : (3.4)

That the operator has the correct conformal dimensions can be seen from the two point

function

〈Oφ(z, z̄)Oφ(w, w̄)〉 =
n

4π2 | z − w |4 (3.5)

As discussed in the previous section the solution (2.1) incorporates a Janus type AdS2

slicing of AdS3. The holographic dual theory is therefore an interface CFT with two half-

spaces glued together by a one dimensional interface. Furthermore the dilaton takes two

values φ± (2.22) at the boundary µ = ±µ0 corresponding to the two half-spaces.

The appearance of the dilaton factor in front of the AdS3 part of the metric (2.1) might

worry the reader since this implies that asymptotically the AdS3 curvature radius behaves

as Rads ∼ e
1

2
φ± near the two boundary components. Does this imply that the central

charge (3.1) is jumping across the defect? This would clearly be strange since the Janus

deformation is associated with a marginal operator which should not change the central

charge of the CFT. The resolution of this puzzle lies in the fact that the three dimensional

– 7 –
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Newton’s constant is behaving like G3 ∼ e
1

2
φ± near the boundary and the dilaton factors

cancel out in the formula for the central charge.

The AdS3 Janus deformation can be analyzed using conformal perturbation theory.

For the location of the interface at x2 = 0, where z = x1 + ix2, the deformation is defined

by adding the following term to the action

S = S + λ

∫

d2zε(x2)Oφ(z, z̄) (3.6)

where λ = γ + O(γ2). We can apply conformal perturbation theory method which was

applied for the AdS5 Janus solution in [3]. We will only calculate the simplest correlation

functions which provide nontrivial checks of the correspondence1. First, it is clear that the

expectation value 〈Oφ(z, z̄)〉 = 0 of the operator (3.4) vanishes in the unperturbed theory

since the operator Oφ is normal ordered. Second the one point function of (3.4) to order

o(λ) is given by

〈Oφ(w, w̄)〉λ = λ〈Oφ(w, w̄)

∫

d2zε(x2)Oφ(z, z̄)〉 + o(λ2)

= −γn

4π

ε(w2)

| w |2 (3.7)

Third the expectation value of the energy momentum tensor to first order in λ is given

by

〈T (w)〉λ = λ〈T (w)

∫

d2z ε(x2)Oφ(z, z̄)〉 = 0

〈T̄ (w̄)〉λ = λ〈T̄ (w̄)

∫

d2z ε(x2)Oφ(z, z̄)〉 = 0 (3.8)

4. Time dependent BTZ-type black hole

In this section, we would like to present another type of related gravity solution. This

solution describes a black hole of a BTZ type. But the black hole solution has an un-

conventional character. The horizon size and the dilaton value on the horizon are time

dependent. The geometry involves two disconnected boundaries and the couplings of the

boundaries differ from each other. A similar kind of multi boundary solution in the Eu-

clidean context is mentioned in ref. [20] but the geometry there is not directly related the

one presented here.

The construction of the solution goes as follows. Note that the ansatz in (2.1) may be

equivalently presented as

ds2
3 = f(µ) cos2 µ ds2

AdS3
, φ = φ(µ) , (4.1)

with the AdS3 metric

ds2
AdS3

=
1

cos2 µ
(dµ2 + ds2

AdS2
) . (4.2)

1In ref. [19], some of the correlation functions are computed exactly for the ICFT.
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Then, of course, the dilaton and the conformal factor are solved by the Janus solution of

the previous section. As in the AdS5 case, the AdS3 becomes the global/Poincare metric

if one uses the global/Poincare parametrization for the AdS2. In fact one may replace

ds2
AdS3

by any three metric satisfying Rab = −2gab, where a translation in µ should be

isometry of the metric cos2 µ gab. The AdS3 metric for instance can be replaced by the

metric for any BTZ black hole. Here we illustrate the detailed construction for the zero

angular momentum case only. The BTZ black hole solution may be constructed using the

orbifolding technique. Note that AdS3 space is the hyperboloid in R2,2 satisfying

−Y 2
0 − Y 2

3 + Y 2
1 + Y 2

2 = −1 . (4.3)

We then use the parametrization of the AdS3 space by

Y0 =

√

r2

r2
0

− 1 sinh r0t , Y2 = ±
√

(r/r0)2 − 1 cosh r0t

Y1 =
r

r0
sinh r0θ , Y3 = ± r

r0
cosh r0θ .

(4.4)

The metric takes the form of

ds2
BTZ = −(r2 − r2

0)dt2 +
dr2

r2 − r2
0

+ r2dθ2 . (4.5)

With the identification θ ∼ θ + 2π, the above describes the BTZ black hole with vanishing

angular momentum [21]. The horizon is at r = r0 and r = 0 corresponds to a singularity

of the orbifold type. In the solution, the coordinate µ is related to the BTZ coordinates by

tan µ = Y2 = ±
√

(r/r0)2 − 1 cosh r0t . (4.6)

The BTZ coordinate does not cover the whole region of our geometry; it can be also

extended to the asymptotic region in addition to the region beyond the horizon. To see

this, let us introduce the Kruskal coordinates

V = er0(t+r∗) , U = −e−r0(t−r∗) , (4.7)

where r∗ denotes

r∗ =
1

2r0
ln

(

r − r0

r + r0

)

. (4.8)

The coordinates r and µ are related to (U, V ) by

r

r0
=

1 − UV

1 + UV
, cos2 µ =

(1 + UV )2

(1 + U2)(1 + V 2)
. (4.9)

In this coordinate, the three metric becomes

ds2
3 =

f(µ)

(1 + U2)(1 + V 2)
(−4dUdV + r2

0(1 − UV )2dθ2) . (4.10)
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µ=−µ
0

µ= µ
0

µ = 0

Figure 1: Penrose diagram for the time dependent black hole with two couplings. The τ (∈
[−π/2, π/2]) coordinate runs vertically upward and µ (∈ [−µ0, µ0]) to the right horizontally

with U, V ∈ (−∞,∞) as a result of the extension. But even this new coordinate does not

cover the whole geometry and can be extended further to the asymptotic region. The fully

extended geometry may be obtained by introducing a parametrization,

V = tan w1 , U = tan w2 . (4.11)

The metric now takes the form

ds2
3 = f(µ)(−4dw1dw2 + r2

0 cos2(w1 + w2)dθ2)

= f(µ)(−dτ2 + dµ2 + r2
0 cos2 τdθ2) , (4.12)

where τ = w1 + w2 and µ = w1 − w2. One may use y =
∫ µ
0 ds

√

f(s) that is introduced

before and the metric is then represented in terms of elementary functions by

ds2
3 = dy2 +

1

2

(

1 +
√

1 − 2γ2 cosh 2y
)

(−dτ2 + r2
0 cos2 τ dθ2) , (4.13)

with the scalar field given in (2.21). The orbifold singularity is now at τ = ±π/2 and the

asymptotic spatial infinities are located at µ = ±µ0. Thus the Penrose diagram is covering

the region τ ∈ [−π/2, π/2] and µ ∈ [−µ0, µ0].

The coupling on the right/left side boundary takes the value of eφ+/ eφ− . Two different

boundary CFT’s are correlated through the bulk in a subtle manner [20]. The boundary

CFT is not the Janus type. Rather the coupling is uniform on the entire circle and remains

constant in time. The geometry has the time reversal symmetry at τ = 0 axis and a parity

symmetry under the interchange of µ to −µ. In the right asymptotic regions with τ ≥ 0,

the future-horizon area is described by the points µ = µ0−π/2+ τ with τ ∈ [0, π/2]. The

horizon area may be evaluated as

A(τ) = 2πr0
α+ sin(π/2 − τ)

sn(α+(π/2 − τ), k)
. (4.14)

For τ ∈ [0, π/2], the area grows monotonically in time and the minimum value is

2πr0
α+

sn(
πα+

2
,k)

and the maximum, 2πr0.

Finally the case of γ2 ≥ 1/2 shall be treated when we consider the black holes in

general dimensions.
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5. Time dependent topological black holes in higher dimensions

In this section, we would like to generalize the black hole solution of previous section to

higher dimensions. The construction is again fairly straightforward. We begin with a

dilaton Einstein gravity described by

I =
1

16πGd

∫ √
gd

(

Rd − gab
d ∂aφ∂bφ + (d − 1)(d − 2)

)

. (5.1)

with d ≥ 3. As we just described in the previous sections, any solutions of the above action

for the d = 3 case can be embedded into the 10d type IIB supergravity. This is also true

for the d = 5 case, which leads to a deformation of AdS5 × S5 geometry. The ansatz may

be taken as

ds2
d = f(µ)(dµ2 + ds2

d−1) , φ = φ(µ) , (5.2)

where the (d − 1) dimensional metric g̃ij describes an Einstein space satisfying R̃ij =

−(d − 2)g̃ij . The equation of motion for the dilaton can be integrated leading to

φ′(µ) =
γ

f
d−2

2 (µ)
, (5.3)

and the Einstein equations are reduced to

f ′f ′ = 4f3 − 4f2 +
4γ2

(d − 1)(d − 2)
f4−d . (5.4)

This can be solved by the integral

µ0 ± µ =

∫ ∞

f

dx

2
√

x3 − x2 + γ2

(d−1)(d−2)x
4−d

, (5.5)

where µ0 is chosen such that µ = 0 at the turning point. Here we are discussing the case

of γ2 ≤ γ2
c with γ2

c = (d−2)
(

d−2
d−1

)d−2
, for which the geometry is free of timelike curvature

singularity. Then the coordinate µ is ranged over the interval [−µ0, µ0] with µ0 ≥ π/2.

Up to this point, there is no difference from the construction of the Janus solutions

except that we put the (d − 1) dimensional spacetime in a generic form of the Einstein

manifold with negative cosmological constant. Now the trick is to take g̃ij as

ds2
d−1 = −dτ2 + cos2 τds2

Σ (5.6)

where ds2
Σ is describing the compact, smooth, finite volume Einstein space metric in (d−2)

dimensions satisfying RΣ
kl = −(d−3)gΣ

kl. One example of such space is given by the quotient

of the hyperbolic space Hd−2 by a discrete subgroup of the hyperbolic symmetry group,

SO(1, d−2). One can pick the subgroup Γ such that Σd−2 = Hd−2/Γ is a compact, smooth,

finite volume space. Notice that Σ2 constructed this way corresponds to constant curvature

Riemann surface of genus no less than two.
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The resulting metric,

ds2
d = f(µ)(−dτ2 + dµ2 + cos2 τds2

Σ) , (5.7)

is the d dimensional generalization of the three metric in (4.12). Note here that τ ∈
[−π/2, π/2] as before. Therefore the Penrose digram for this higher dimensional black hole

is again described by figure 1, in which a point represents Σ slice. The spacetime is locally

isomorphic to AdSd and the curvature singularity at τ = 0 is again of the orbifold type.

Let us turn to the over-critical case of γ2 > γ2
c . The scale factor f(µ) is now ranged over

[0,∞) without any turning point and the geometry involves an extra curvature singularity

at f = 0, which is timelike. The factor f(µ) can be solved by the integral

µ0 − µ =

∫ ∞

f

dx

2
√

x3 − x2 + γ2

(d−1)(d−2)x
4−d

. (5.8)

where µ0 can be taken to be arbitrary. Since f has to be non negative, the µ coordinate

is ranged over [µ0 − κ, µ0] where the length of the interval, κ(γ2), is determined by the

integral

κ(γ2) =

∫ ∞

0

dx

2
√

x3 − x2 + γ2

(d−1)(d−2)x
4−d

. (5.9)

For γ2 > γ2
c , κ(γ2) is decreasing monotonically from infinity to zero. The metric for the

geometry is still given by (5.7) but the timelike singularity occurs at µ = µ0 − κ. Because

of this, the spacetime cannot be extended to the region of µ < µ0 − κ. If γ2
c < γ2 < γ2

s

with γ2
s defined by π/2 = κ(γ2

s ), the geometry becomes free of naked singularity describing

a regular time-dependent black hole.

Representing the volume of Σ space by VΣ, the future-horizon area is given by

A(τ) = VΣ(cos(τ)f
1

2 (µ0 + τ − π/2))d−2 . (5.10)

One can check that the area is monotonically increasing for τ ∈ [−π/2, π/2] reaching the

maximal value VΣ at τ = π/2. In this sense, the black hole is truly time dependent for

nonvanishing γ. For γ = 0, the horizon area remains constant and the black hole becomes

static. In fact, it is straightforward to show that the γ = 0 solution corresponds to the

M = 0 and k = −1 topological black hole solution of ref. [22].

We shall not discuss the detailed framework for the gravity/gauge theory correspon-

dence here. Note, however, that the boundary metric of the dual CFT can be obtained by

the multiplication of any h2 where h approaches linearly zero at the boundary. Different

choice of h leads to a different boundary metric. By taking h = f− 1

2 for instance, the

boundary metric becomes

ds2
B = −dτ2 + cos2 τds2

Σ , (5.11)

which is cosmological. The dual CFT will be defined in this cosmological background space-

time. Although the boundary spacetime reveals the big-bang and big-crunch singularities

at τ = ±π/2, the bulk-extended metric at the points is perfectly regular.

– 12 –



J
H
E
P
0
2
(
2
0
0
7
)
0
6
8

If one chooses h = f− 1

2 / cos τ , the boundary now becomes

ds2
B = −dt2 + ds2

Σ , (5.12)

where t ∈ (−∞,∞). Thus the dual CFT is defined on R × Σ now.2 In this case, the finite

temperature system starts off with some out of equilibrium state at τ = 0 and then the

excess kinetic energy is thermalized reaching the equilibrium at late time. One expects that

detailed information about the thermalization process can be extracted from the behavior

of the solution. Further study is necessary in this direction.

6. Conclusions

We generalized our previous study of the Janus deformation to the AdS3 ×S3 ×M4 space.

The AdS3 part is replaced by the AdS2-sliced Janus. However, the total spacetime is not the

simple product of Janus3×S3×M4, as one might have thought. Indeed each component of

the product space is warped in a specific manner by an exponential of the dilaton. Besides

this nontriviality, the solution is expressed in a simple analytic form. Thus one may hope

that further quantitative studies will be much facilitated. The dual CFT interpretation is

similar to the AdS5 × S5 case. A spatially dependent marginal deformation dual to the

dilaton leaves the conformal invariance only in the interface of two halves of the boundary

space. The resulting dual field theory is an ICFT2.

Apart from the Janus deformation of the AdS3 × S3 × M4 space, we also discussed

the Janus deformation of the BTZ black hole. The Janus BTZ black hole turned out to

be time dependent and has two disconnected boundaries. The dilaton does not divide

each boundary component into two halves. Rather, it takes one value in one component

of the boundaries and the other in the other component. This black hole solutions can be

generalized to the higher dimensions. Among these the three and five dimensional ones

can be embedded into the type IIB supergravity. It would be quite interesting to study

further the microscopic description of these time dependent black holes.
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